Mission Overview

– **Primary Objectives**
 - Measure speed of sound as it changes with altitude
 - Measure infrared and ultraviolet waves as they change with altitude
 - Capture video of flight
 - 1 minute of video every 5 minutes
 - Pico ITX Operation

– **Secondary Objectives**
 - Temperature
 - Pressure
 - Acceleration
– We expect to see that temperature is the only factor in the speed of sound as the payload gains altitude
 • since the change in pressure and the change in air density are equal and opposite factors of the speed of sound their effects will not be noticed

– Factors for Speed of Sound
 • Temperature
 – As temperature increases speed of sound increases
 » This is due to the increased activity (energy) of the air particles being disturbed as temperature rises
 • Pressure
 – As pressure increases speed of sound decreases
 » This is due to the decreased activity of air particles as pressure increases
 • Air Density
 – As air density increases speed of sound increases
 » This is due to the increased difficulty to accelerate particles as the density of the medium is increased
• Measure intensity of specific wavelengths
 – We expect to record a varied amount of Infrared and Ultraviolet waves relative to the amount of atmosphere through which they pass
 – Relative brightness levels (intensity)
 » black and white
 – Scattering
Video Capturing

• Use Pico ITX board to capture as much video as the power and memory will allow
 • Video may help explain any odd data recorded
 • Integrating camera to Pico ITX is a current challenge
 • Entertainment
• Subsystem Requirements

- Power
 - 12V
- No need to control temperature or pressure as we are measuring quantities relative to these factors

- What subsystems do you have: power, C&DH, thermal, etc.
- What requirements do you have for each subsystem.
- What requirements do each subsystem impose on each other.
 - You should have quantifiable requirements in this section.
 - Power subsystem shall supply 2W to…
 - Power subsystem shall remain at or above 72 F at all times during the flight.
- Which requirements are design drivers?
Test Plans

• Vacuum Bell Jar
 – This will simulate a low pressure environment and test our components in these conditions

• Power
 – We will run circuits to test the amount of power needed and for how long

• Filters
 – Resolution of camera
 – Filter effectiveness
Parts List

• Speed of Sound
 – Jameco 134105
 – Jameco is a SRF (sonic range finder) distributor and 134105 is their part number
 – [Data Sheet](#)
 – Tubing for sonic range finding
 – Possibly PVC, aluminum
 – End piece for effective sonic reflection
 – Possibly Arduino
Parts List

• Infrared and Ultraviolet Measurement
 – Webcam
 – Filters
 – Possibly Arduino
Parts List

• Video Capturing
 – Webcam
 – Pico ITX
<table>
<thead>
<tr>
<th>Week</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Component Research</td>
</tr>
<tr>
<td>2</td>
<td>Buy Parts</td>
</tr>
<tr>
<td>3</td>
<td>Start assembly</td>
</tr>
<tr>
<td>4</td>
<td>Start assembly</td>
</tr>
<tr>
<td>5</td>
<td>assembly/debugging of breadboard</td>
</tr>
<tr>
<td>6</td>
<td>Structure/Design</td>
</tr>
<tr>
<td>7</td>
<td>Working Breadboard</td>
</tr>
<tr>
<td>8</td>
<td>Vacuum Test</td>
</tr>
<tr>
<td>9</td>
<td>Cold Test</td>
</tr>
<tr>
<td>10</td>
<td>Drop Test</td>
</tr>
<tr>
<td>11</td>
<td>Final Testing/Repair</td>
</tr>
<tr>
<td>12</td>
<td>Travel</td>
</tr>
<tr>
<td></td>
<td>Launch 8/1</td>
</tr>
</tbody>
</table>
• Conclusions

– Issues and Concerns
 • Power
 – may be an issue for running cameras
 – essential to our success
 • A swinging payload might make it hard to analyze data from cameras with the infrared/ultraviolet filters

– Closing remarks
 • Thank you for the opportunity to do this project!